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Questions of the similarity of flows of relaxing media are of particular importance 
in view of the extreme complexity of such processes. The traditional method of obtaining 
the dimensionless combinations -- the similarity parameters -- can be rather ineffective in 
this case. Such a situation arises when a large number of criteria have to be satisfied 
simultaneously, which often makes accurate modeling of effects impossible. In view of this 
a search for approximate or partial modeling conditions, or for various correlations, may 
be more fruitful. 

Examples of relaxing media are two-phase media, whose general flow similarity condi- 
tions were obtained in [I]. This system of parameters was used in conjunction with empiri- 
cal data on some features of the effect in [2, 3] for the case of spontaneous condensation 
associated with steady and unsteady flows of supercooled vapor. The semiempirical similarity 
formulated in [2, 3] can be refined if the question of the boundary conditions and nozzle 
shapes that allow accurate modeling of flows is considered. On the other hand, the set of 
similar flows can be expanded by reconsidering the principle of entropy correlation of con- 
densation shocks from the viewpoint of precise modeling [4]. 

i. Spontaneous condensation of a real gas flowing through nozzles is a complex 
phenomenon whose features have been inadequately investigated in a number of,cases. Such 
cases include condensation in high-velocity, highly supercooled flows, condensation of a gas 
in which the internal degrees of freedom of the molecules are in a nonequilibrium state, 
condensation in a multicomponent medium, and others. 

In view of this we confine ourselves to an analysis of the simplest and most widely 
used model, based on the Frenkelt--Zel'dovich theory. 

We make the following assumptions: 

i) The system is adiabatic; 

2) the flow as a whole can be either steady or unsteady; there is no phase slip; 

3) the condensing gas is thermally and calorically ideal; 

4) nucleation is quasisteady; 

5) the condensate is uniformly distributed in the gas phase; 

6) the drops are spherical, their growth rate is independent of their size, their 
temperature is equal to the saturation temperature at the given pressure of the surrounding 
gas, and heat transfer between the phases can be neglected; 

7) the temperature dependence of the surface tension coefficient is given by the 
Ramsay--Shields--E~tv~s equation [i], and the density of the liquid phase and heat of vapori- 
zation are constant. 

According to the above, for the description of a flow of two-phase medium in a channel 
of prescribed shape we can use the following system of dimensionless equations: 

Op , 3p u f  _0, Shp  ~z~ Ou , Op S h F  ~ -~- oz "b-F -1- pu ~ - r  E u  ~ = O, 

Shp ~ e -~- E u  ~- pu e - -  E u  = Sh  E u  ~/- - r  Eu  pu ~ -  

(1.1) 

ghukovskii. Translated from Zhurnal Prikladnoi Mekhaniki Tekhnicheskoi Fiziki, No. 
pp. 75-83, January--February, 1982. Original article submitted December 16, 1980. 
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(1.3) 

where p is the density of the two-phase medium; On is the density of the gas phase; p is the 
pressure; T is the temperature; u is the velocity; e is the internal energy; y is the de- 
gree of condensation; J is the nucleation rate; 9 is the drop growth rate; r, is the radius 
of the condensation nucleus; Ps(T) is the saturation pressure; F is the area of current 
jet; x is the coordinate; t is the time; �9 is the characteristic time of the unsteady pro- 
cess; ~c is the characteristic length; 0o is the density of the liquid phase; L is the heat 
of vaporization; R is the gas constant; k is the Boltzmann constant; • is the adiabatic ex- 
ponent; N A is the Avogadro number; p is the molecular weight; T* is the critical temperature; 
o, is the coefficient in the Ramsay--Shields--E~tv~s equation for the surface tension; e is 
the condensation coefficient; and 8 is a factor correcting the nucleation energy. The sys- 
tem of gasdynamic equations (I.i) contains similarity parames Sh is the Strouhal number 
and Eu is the Euler number. The system of equations for the phase-change kinetics (1.2) 
contains parameters Ii-6, which are associated with the spontaneous condensation process. 
The subscript c denotes the characteristic scales of the corresponding gasdynamic quanti- 
ties. The parameter Ii is the ratio of the characteristic condensation flow to the char- 
acteristic gasdynamic flow, 12 is the ratio of the characteristic length of the condensation 
nucleus to the characteristic gasdynamic length ~c, la is the ratio of the characteristic 
drop growth rate U to the characteristic gasdynamic velocity uco. The parameters 15,6 de- 
pend on the thermophysical properties of the substance, and the role of parameter I~ will 
become clear after the scales of the gasdynamic parameters have been defined. 

The system of equations (1.1)-(1.3) becomes meaningful on attainment of the saturation 
state, in which the boundary and initial conditions for its solution should be prescribed. 
In the general case the solution of system (1.1)-(1.3) even with steady boundary conditions 
may be of a self-oscillating nature, due to the appearance of an unsteady shock wave [3]. 
When such a state is realized the characteristic scale t of the unsteady process will depend 
on the boundary conditions and it can be established only by obtaining the corresponding 
solution. In view of this we confine ourselves to an analysis of the steady-state approxi- 
mation of system (1.1)-(1.3) at this stage. 

We assume that at certain values Pc, Tc, 0c, and uc ~ prescribed in the saturation 
cross section F c of a channel of variable cross section, the flow is adiabatic in the 
familiar gasdynamic sense. It is obviously convenient to choose the values Pc, To, and Pc 
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as scales for the gasdynamic parameters. The boundary conditions have the form p = T = p = 

F = I, y = ~o = ~I = ~2 = 0, u c = Uc~ and Eu = i. 

For a specific substance the parameters 15,6 are fixed, the parameter 13 can be ex- 
pressed in terms of 14 and 15, and from the conditions I~ = idem, 12 = idem we must have 
I c = idem. As a result, the parameters Ic, 14, u c, ~, and ~ will be independent. Within 
the framework of the considered spontaneous condensation theory the coefficients ~ and 
are not defined. Available data indicate that they can depend both on the local flow 
parameters and on the entire prehistory of the flow of specific gas [2, 3, 5]. On the other 
hand, in certain ranges of the parameters the coefficients ~ and B vary slightly and, hence, 
we can assume that they are constant and exclude them from the characteristic parameters. 
As a result, the similarity conditions reduce to reproduction of the flow velocity at the 
saturation point Uc, the characteristic flow scale Ic, and the parameter I,, and the varia- 
tion of the dimensionless area of the channel (1.3) below the saturation cross section will 
be given by the same function of the dimensional coordinate x ~ i.e., the equalities 

u c : idem,  l~ = idem, l= = idem, f(x ~ : idem. (1.4) 

will be fulfilled. If the saturation state occurs downstream of the critical cross section 
of a Laval nozzle, then the entropy So and the total enthalpy Ho in the flow of superheated 
gas will be constant. The condition 14 = idem is identical to the conditions 

S~ = [demandT= = idem, ( 1 . 5 )  

We take into account the relation ur r --I where To is the stagnation 

temperature. The condition u c = idem is then identical to the condition To/T c = idem, which 
in conjunction with (1.5) necessitates reproduction of the stagnation parameters To and po. 
Thus, if I c = idem and f(x ~ = idem, only flows with fixed stagnation parameters can be 
similar. 

It is obvious that the question of the choice of the characteristic length I c when 
f(x ~ = idea has to be solved in each specific case, proceeding from the flow characteris- 
tics. For instance, if flows in nozzles of limited extent are considered, the character- 
istic length selected should be the distance between the saturation cross section and exit 
cross section of the nozzle, with relation (1.3) valid in this length -- in other words, 
nozzles in which similar flows can occur can differ only in transverse scale. Such rigid 
limitations rule out, in fact, the possibility of modeling flows of a spontaneously con- 
densing gas. Nevertheless, we can assume that not all the parameters in (1.4) have an equal 
effect on the accuracy of flow reproduction [2]. In view of this we take into account the 

following fact. 

We know that in the case of constant entropy (1.5) for nozzles with straight genera- 
trices partial similarity exists in the hypersonic approximation within the framework of 
the entropy correlation principle [4]. Instead of reproducing the stagnation temperature 

To with So = idem we require the reproduction of the parameter 

1 1 

h. T ~ ( x - 1 )  - T  

where h, is the diameter of the critical cross section; 27 is the nozzle angle; i = i and 

2 for plane and axisymmetric flows, respectively. 

In the given case the distributions of the gasdynamic functions on the downstream side 
of the saturation state will be similar if we use the following transformation of the coor- 

dinate x~ 

x=xO ( h, ~(.~.x-'-l) ~)3. ~ t - ~ o  
Since nozzles with straight generatrices are widely used in practice it is of interest 

to assess the role of the condition To = idem within the framework of exact similarity and 
to compare the latter with the entropy correlation. The characteristic gasdynamic scale I c 
can conveniently be connected with the dimension of the saturation cross section F c in the 

following way: 
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where b is the width of the plane nozzle. 

If the saturation state is attained downstream of the critical cross section, l c will 
he uniquely connected with the diameter of the critical cross section h, and the parameter 

I4 = To/T c 

o r  i n  t h e  h y p e r s o n i c  a p p r o x i m a t i o n  w i t h  T o / T  c >> 1 
1 

h, (TO~ ~(~-t) 
l e ~ =  tanY~- '~c]  " 

Thus, for nozzles with straight generatrices at M >> i the main similarity conditions 
have the form ~ = idem and So = idem, and we will demonstrate the role of the condition 
To = idem on the basis of parametric calculations. 

The results of such calculations for nitrogen are shown in Fig. i in the form of dis- 
tributions in x of the isobaric supercooling AT. As a reference flow we take a flow with 
To = 94~ po = 1.92"i0 s Pa (14 = 1.22) in a conical nozzle with geometric parameter 
h,/tan y = i cm. The corresponding curves are marked with the number i in Fig. I. Further, 
with increase in To and So = idem the geometric parameter of the nozzle was altered in 
accordance with the conditions ~2 = idem and ~t = idem relative to the reference flow. The 
distribution of AT is shown in Fig. I for these cases by dashed and continuous lines, re- 
spectively. Variants 2-4 correspond to stagnation temperatures 200, 450, and 800~ and 
14 = 2.61, 5.88, and 10.42. For the dashed curves the x axis is directed downward, and 
xz = x~ For the continuous curves the x axis is directed upward, the origin is shifted 
to the right, and the coordinate X= is the product 
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A comparison of the presented results shows the following. The entropy correlation 
leads to better reproduction of the maximum supercooling AT of the flow than in the first 
case, and stabilization of the distribution of the gasdynamic parameters occurs when I~ ~ 
3. In turn, within the framework of exact similarity the stagnation temperature has a sig- 
nificant effect on the distribution of the parameters, the position of the maximum super- 
cooling point (Wilson point), and its value. 

Thus, entropy correlation [4] is a more exact method of constructing engineering calcu- 
lations than the known approximate similarity variant [2]. On the basis of [4] we can ob- 
tain a combined parameter for treatment of the experimental data for condensation shocks. 

2. One of the components of the method of calculating the maximum supercooling of the 
flow within the framework of the entropy correlation [5, 6] is graphical solution of the 
equation for the Wilson point 

(D (Tv, So) = ~1 \ tan 7 '  ( 2 . 1 )  

( s e e  r e l a t i o n  (4) f rom [ 6 ] ) .  For  t h i s  t h e  l e f t - h a n d  s i d e  o f  ( 2 . 1 )  i s  r e p r e s e n t e d  by a 
nomogram in  t h e  fo rm of  l i n e s  o f  e q u a l  v a l u e s  o f  e n t r o p y  So f o r  d i f f e r e n t  s t a t i c  t e m p e r a t u r e s  
a t  t h e  W i l s o n  p o i n t  T V. An example  of  such  a nomogram i s  F i g .  1 i n  [ 6 ] .  I t  i s  e a s y  to  s e e  
t h a t  t he  l i n e s  So = c o n s t  i n  t h i s  f i g u r e  a r e  s i m i l a r  i n  s h a p e  and a r e  s h i f t e d  t h r o u g h  a l -  
mos t  t h e  same d i s t a n c e  w i t h  t h e  same c h a n g e  i n  e n t r o p y ,  and t h a t  t h e i r  v e r t i c a l  a s y m p t o t e s  
c o r r e s p o n d  to  t e m p e r a t u r e  T c ( S o ) .  

In view of this the following transformation of (2.1) is of interest. We convert the 
thermodynamic parameters on the left-hand side of (2.1) to dimensionless form by analogy with 
Sec. i, and we transfer the additional scale factors to the right-hand side. As a result 
we obtain 

) \r= So == 

Taking into account the relation 

1 I 

q~3~ where c~3 -- ~lpcT~ 

__ S' S,R z--I• |nTc--lnpc~r~ ' (2.2) 

we can express the parameter ~3 in the following way: 

( ~+~ 1 ) so-s" 
I n ~ F : ~ : = l n T l + \ 2 ( ~ _ l )  ~(~---1) lnT~ R ' 

whe re  S '  i s  t h e  e n t r o p y  c o n s t a n t .  We r e c a l l  t h a t  t h e  t e m p e r a t u r e  T c i s  d e t e r m i n e d  by t h e  
e n t r o p y  So.  The d e g r e e  o f  d e p e n d e n c e  o f  ~, on So can  b e  e s t a b l i s h e d  n u m e r i c a l l y .  

For  i n s t a n c e ,  F i g .  2 shows t h e  r e s u l t s  o f  c a l c u l a t i o n  o f  ~, i n  t h e  fo rm o f  l i n e s  o f  
e q u a l  v a l u e s  o f  So ( S o ' 1 0  -3  J / ( k g ' ~  = 7, 6 . 1 ,  5 .2  -- c u r v e s  1 - 3 ,  r e s p e c t i v e l y )  as  f u n c t i o n s  
of TV/Tc; for the whole range of So we used a single relation for the saturation line of the 
form 

log Ps : A - -  B /T .  ( 2 . 3 )  

The g r e a t  c o n g e s t i o n  o f  t h e  c u r v e s  i n  t h e  c o n s i d e r e d  c a s e  i n  c o m p a r i s o n  w i t h  t h e  
nomograms f rom [6] i n d i c a t e s  a weak d e p e n d e n c e  o f  ~ on So.  T h i s  f a c t  can  b e  u s e d  to  
r e p r e s e n t  t h e  e x p e r i m e n t a l  r e s u l t s  i f  t h e  d a t a  on t h e  c o n d e n s a t i o n  s h o c k s  i n  n o z z l e s  (o r  
j e t s )  a r e  t r e a t e d  i n  t h e  v a r i a b l e s  

[ •  i ] l n T c  So Tv 
~ :  I n q h ~  2(~---1) ~(• 1) R '  r~" ( 2 . 4 )  

To determine the values of T c it is desirable to use a relation of type (2.3). 
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The results of such treatment of condensation shocks in flows of nitrogen [7-10], 
argon [ii, 12], and water vapor [13-16] are shown ifl Figs. 3-5, respectively. Curves 1 and 
2, drawn through the experimental points in Figs. 3 and 4, correspond to plane and axi- 
symmetric flows. Curves 3 are the phase-equilibrium lines (2.3) plotted in coordinates 
So/R, Tc; for nitrogen [17] A = 9.784, B = 359.1, S'/R = 14.66; for argon [18] A = 9.121, 
B = 359.3, S'/R = 15.85. The temperature is in ~ and p is in Pa. 

The experiments in nitrogen cover the range Po = (8-350)'105 Pa, To = 290-1730~ and 
those in argon cover the range po = (0.3-137)'105 Pa, To = 214-350~ 

Expermental data for water vapor (Fig. 5) have been obtained in the range po = (0.37- 
32)'105 Pa, To = 370-520~ The slightly greater spread of the points in comparison with 
the previous cases can be attributed to the variation of the coefficient 8, which corrects 
the nucleation energy in the equation for the nucleation rate. As was shown in [5], for 
water vapor ~ is a complex function of the static parameters and lies between 0.75 and 2.9. 
The upper and lower experimental points in Fig. 5 correspond to these values of 8. Never- 
theless, the experimental points from [14] and several points from [16], for which ~ differs 
from unity by not more than • lie satisfactorily on the theoretically-calculated curve 
for 8 = 1 (line I). The phase-equilibrium curve in Fig. 5 (line 2) is plotted from 
Vargaftik's data [18]. 

The comparatively small spread of the points relative to curves 1 and 2 and their simi- 
lar nature in Figs. 3-5 indicate that the assumptions made above are valid, and that this 
method can be used to treat the experimental data in a wide range of parameters. 

The curves in Figs. 3 and 4 can be used, in turn, to estimate the temperature at the 
Wilson point and the position of the condensation shock in the nozzle. For this we need to 
calculate the value of the entropy So (2.2), determine T c from the curve 3, then calculate 
the parameter Z (2.4), and from curve 1 (or 2) find the corresponding value of Tv/T c. Such 
an estimate in a random case will be reliable if the following two restrictions, which are 
sufficient and are directly derived from the spontaneous condensation model used above, are 
satisfied. One of them requires equilibrium of the gas expansion up to the saturation state 
[19], and the other requires the quasisteadiness of nucleation in the vicinity of the hypo- 
thetical Wilson point [13]. The conditions of the experiments in [7-10] correspond very 
closely to these restrictions. 

3. As is known, the self-oscillating state is realized in the case of spontaneous 
condensation at low Mach numbers [3]. If the amount of phase transition heat brought to the 
flow exceeds the limit for the given M number, an unsteady shock wave is formed. In moving 
upstream this shock wave passes through the region of intense nucleation and rules out the 
possibility of a phase transition. The shock wave, retaining its translational motion, be- 
comes weaker under the action of rarefaction waves and degenerates, thus opening the way 
for the formation of a condensation shock and repetition of the cycle. Following [3, 4], 
it can be shown that the position of this condensation shock is also given by a relation of 
the form (2.1) 

I, 
~2 (Tv, So) = ~4 q , ,  To), ~4 (l , ,  To) ~ , t,=(R,h,) ~/2, ( 3 . 1 )  

where R, is the radius of curvature of the nozzle wall in the region of the critical cross 
section; l, is the characteristic linear scale of such flows. 

For self-oscillating regimes the stagnation parameters usually correspond to a state 
of low superheating. Hence, as the scales of the gasdynamic quantities we select their 
values in the critical cross section of the nozzle. Then, from the conditions 12 = idem, 
13 = idem, and 14 = idem we successively derive the conditions 

l ,  = idem, p ,  = idem, T ,  = idem, I ~ - - - i d e m .  ( 3 . 2 )  

If the flow to the critical cross section remains isentropic (So = const), then it foliows 
from (3.2) and condition Sh = idem that flows with fixed stagnation parameters, scale l,, 
and oscillation period �9 will be similar, i.e., the relations 

Po = idem,  To = idem, l .  = idem, T = idem. ( 3 . 3 )  
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will be conserved. In this case the possibility of combining the condition ~ = idem with 
the other conditions from (3.3) has to be established independently. 

To determine the frequency characteristics we carried out parametric calculations of 
self-oscillating nitrogen flow regimes in nozzles of different scale by the method of [3]. 

Thus, the crosses in Fig. 6 mark the values of Sh; the ratio Tv/To is the argument, 
The continuous lines connect the values of Sh obtained for a nozzle with l, = i0 -2 m, the 
dashed lines do the same for a nozzle with l, = 10 -I m, and the dot-dash lines for a nozzle 
with Z, = i m. The families of curves 1-3 and curve 4 correspond to constant values Of 
the entropy So, equal to 5.24"103 , 5.09'103 , 4.99"103 , and 5.17"103 J/(kg'~ The rela- 
tions Sh(Tv/To) when So = idem are, in fact, linear; the gradient of the straight lines is 
slightly altered. In addition, the effect of the nozzle scale also decreases monotonically 
with reduction of entropy. The presented data can be generalized by the relation 

Sh = t6.55Tv/To+(7.699--t.55~.lO-3So)~g ~4 -F 2.0t8.t0-~So - 2 3 . 9 7 3 ,  ( 3 . 4 )  

the mean error of which does not exceed 20% (So, J/(kg'~ ~, see). 

It can be deduced from relations (3.1) that when condition (3.3) is fulfilled the 
equalities T~ = idem and T v = idem and, according to (3.4), the condition �9 = idem will also 
be fulfilled. In other words, fulfillment of the conditions Po = idem and To = idem ensures 
the reproduction of the frequency characteristics of a self-oscillating flow in nozzles with 
the same value of Z,. 
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STABILITY OF RELATIVE MOTION OF PHASES IN TWO-PHASE FLOWS 

O. V. Voinov and A. G. Petrov UDC 532.529 

The stability of homogeneous states of a two-phase medium in relation to small dis- 
turbances (the problem of the correctness of the Cauchy problem for equations of two-phase 
media) is examined. We show that a consideration of the effect of particle (bubble) dif- 
fusion caused by relative motion of the phases is of fundamental importance. The pressure 
in the disperse phase is a subsidiary factor. The critical stability loss curve is ob- 
tained. 

The problem of stability of two-phase media has been examined in many papers [i-5]. 
Existing theories predict a short-wave instability of sedimenting suspensions, fluidized 
beds, and layers of liquid with bubbles. This instability should lead to the rapid appear- 
ance of inhomogeneities within the medium and to the practical unattainability of the homo- 
geneous state. Contradictory to theory, however, manifestly stable states are obtained in 
experiments [4]. Stability of a liquid with bubbles has been obtained only in [6, 7]. In 
[6] stability was secured by the action of electrical forces. In the problem of thermo- 
capillary motion in a gas--liquld mixture stability in the short-wave region is obtained by 
bubble diffusion [7], 

i. Equations and Method of Solution 

The equations for the change of momentum and conservation of mass of a two-phase medium 
have the form [i] 

e p d v / d t =  e p g - - A p - - d i v P ~  - - cF ,  p sdu /d t=  p~g-- ( t~)div  P8 + F ;  (1 .1)  

O c / O t + d i v  cu = O, O e / O t + d i v  ev = O, c + e  = 1, (1.2) 

where P, e, v and Pc, c, u are the densities, volume concentrations, and densities, re- 
spectively, of the carrier and disperse phases; g is the acceleration of gravity. The force 
of phase interaction F depends, in particular, on the relative velocity of the phases w = 
u --v. The dispersed particles are assumed to be spheres of the same radius R. 

At low Reynolds numbers (Re = wE/9) the force of phase interaction, with due allowance 
for particle diffusion [8], has the form 

F =--Pg'+ F*, F* = F:+F~, (1.3) 

F~ --  ~G �9 ~ OOWc-iDvc, B2w, Fa= R~ Ow 

where pg' is the effective repulsive force, g '  = g -  dv/dt; F~ is the viscous resistance 
force; F~ is the small contribution due to diffusion; G is a dimensionless number; D is the 
diffusion tensor; 

D u  = Rlwl([~6il  + ~- /~)wiw/w~). (1.4) 

The particle pressure in the medium is given by the tensor 

(Ps)u = O ~ w ~ S ~ 6 u + P ~ ( S - - S ~ ) w ~ w i  �9 (1.5) 

At finite Re the coefficient G in (1.3) depends on Re and is connected with the drag 
coefficient: C W = G/Re. In this case it is essential to take into account the added-mass 
effect, which, following [i], we write in model form 

Fm = ( i /2)p(dv/dt  - -  du/dt). (1 .6)  

The f l u c t u a t i o n s  of  the  a c c e l e r a t i o n  of  the  l i q u i d  must a l so  be taken i n to  accoun t :  
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